C. GIACOVAZZO

No theoretical justification has been made, on the
other hand, for the use of the pseudo-nolrmaized struc-
ture factors E’ proposed by Karle & Karle (1966).
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The Phase Problem and its Implications in the Least-squares Refinement of Crystal Structures
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It is found that covariance problems encountered in pseudosymmetric crystal structures are caused by
an incorrect use of the least-squares refinement procedure. Rederivation of the least-squares equations
for the situation in which the residual need not have the phase angle « or « + 7, where « is the phase angle
associated with a trial structure, reveals that the minimization of the component at z/2 to « has been
omitted from the least-squares equations. Inclusion of the extra terms associated with this minimization
reveals that it should now be possible to refine a centrosymmetric crystal in an non-centrosymmetric
space group. It is also shown that the use of weights derived from counting statistics alone is incorrect
and, with a correct weighting scheme, >wA?%/(n— m) should reduce to one in a single cycle. The weighting

scheme is re-evaluated for further refinement cycles.

Introduction

For the least-squares refinement of single-crystal struc-

tures from X-ray diffraction data it has been customary

(International Tables for X-ray Crystallography, 1959)

to minimize the sum of the n weighted squared residuals

Sl = th(IFoIh - [Fclh)27 where w,,“:var (IFalh)1 by SOIV'
h

ing the equations
ad ad
; zh: Wy (3—lh) o (a—uj) on [y — (u;)o]

a4
=—> w.A (—) ; i=ltom,
En: heo ou;/ o

where 4=|F,|—|F,|, the difference between the meas-
ured and calculated amplitudes. Throughout this
paper the subscript 4 implies the sth observable and
the subscript 0 implies evaluation with parameters
(u;)o of a trial structure. Now for 4=|F,|—|F, and
tan ay=(B,[A)o we use (94/du;)on= — (O|Fc|/0u;)on=
—[cos ag(8A./0u;)g + sin og(0B.[0u;)o)s-

The application of this procedure reveals two ap-
parent faults. Firstly the assumption that wy'=
var (|F,|,) because (F,), is without error does not
produce the expected result that Yw,42=n—m in a

h

single cycle. Secondly, in pseudosymmetric structures
the apparent variances of parameters #; are usually in
excess of calculated variances (Rae, 1973). This sug-
gests that both the weighting scheme and the actual
least-squares equations are at fault. Investigation shows
that this hypothesis is indeed true and that the situa-
tion may be remedied.

Theory

The least-squares equations

Account should be taken of the fact that we are
dealing with quantities F=A+iB that do not have a
fixed phase. If (F,), is an initial estimate of the phased
quantity F, for which only the magnitude |F,| has been
experimentally determined, then it is found that a dif-
ferent set of least-squares equations are generated by
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considering the minimization of >w,4; 4, where 4, is

h
the phased quantity (F,)o,— (F.), rather than the un-
phased quantity ||F,|,—|F.|,|- These equations are seen
to minimize S;+ S, rather than S; where

S1=2 wil(4,— A.) cos ay+(B,— B) sin oo}2
h

Sy=2> wi[—(A4,— Ac) sin o+ (B, — B,) cos o)}
h

and
tan ooy =(B./Ac)on -

[—(A4,—A4.) sin oy + (B, — B.) cos o), is the component
of [(F,)o— F.], at /2 to ay,, the phase of the calculated
value (F,)o, obtained from an initial set of parameters
()o. Si+S,= %w[(Ao — A +(By,— B, .

Let us initially ignore the implications of the weight-
ing scheme and minimize S, + S, for a particular weight-
ing scheme, where w, is real. An estimate of 4, is 4,=
(F,)on— Fy» where F, is an estimate of the quantity (F.),
associated with the parameters #; in the approxima-

tion
F n=Fon+ Ei: anildy — (:)o],
where
JF, _ 04, JB,
i = ( Juy )on B (3—14;)0;: + ( ouy )
ie. 2;. =don— ziahi[ﬁi — (u1)ol, where Aoy =(F,)on—(Fc)on.

We select u; values to minimize §=Zﬁ,fw,,2,,. An in-
h
crement in § is given by 2 (Ou)*an*wpd, + complex

conjugate. If we evaluate the ay; values for real param-
eters u; then S is a minimum for any real du, if

Z a,,iw,,A,,+complex conjugate=0; i=1tom.
h

These m equations can be expressed as
jZA 14— (5)o] =B,
where

Ajj=Au=% > ayw,a,;+complex conjugate;
h

B,=1 > amwydey+complex conjugate.
h

(aA )

du

() (a),)
ouy 1o * ou; | on

< ) wh(Ao_Ac)Oh
i/ Oh

0B
+ ( °) wy(B,— B, )
aui on h( )Oh

More explicitly
04 )

Au'=hz ( ( 3u:

THE PHASE PROBLEM AND ITS IMPLICATIONS

If (F,)or and (F,)y, are assumed to have the same phase
o, then
=2 (cos aou(dAc/0u)on

+ 8inoton(0 B /0ty )on) Wil | Foln — | Felon)-

The weighting scheme

To evaluate the variance-covariance matrix of real
parameters #; we need to evaluate M;;=M;=
{(d;—u;) (di,—4;)) where i, is the true value of the
parameter #; and the symbol { ) is used to denote ex-
pectation values. Now if #; is known then #;—#; can
be evaluated without error by putting (u,),=1; in the
least-squares equations

Ej: Ayjld;—(u;)o] =B, .

Then
== Z (A~ pBs
without error only if the estimate of the true value F,

given by
Fy=(F)on+ Ej: ay;lit;— ()]

is used to evaluate By, for then we may say

(Fo)on— Fh=2h + ; a1, — 1)

where

lfh =(Fo—F)on— ,Z ay,lit;— (uj)o]

so that
Bi=1% z (anewndn+ awydy)
r
+3 Ej: (@nWhtn; + QuWaany) (;— ;) = z A —ity)
h 7

and o
M= %: (A7 DulBiB) (A7), .

However we do not know #; and the estlmatlon of
M;; as (A7Y)0° 1mp11es that (B,B,)=A,0% If ¢* is

"~ chosen to be Zw,,A,, A,,/(n m) then we imply that the

quantities w”2 [(F,)or— Fy] all belong to the same dis-
tribution with variance o2, but imply nothing about
the form of this distribution and so significance levels
can only be obtained by experimental determination of
the distribution from actual w,,’z[(Fo)o,, F,] values.
However if weights of {|(F,)os— F4|*>~! are estimated

and used and Swpdid,=Swad&don+ 23 Bilt: — ()]
h h i

does not equal »— m then we can say that the estimates
of {|(F,)on— Fy|*) are wrong.

The rigorous derivation of the correct least-squares
equations

A derivation of the correct least-squares equations
to solve can be obtained by minimizing the variance
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in a function f——fo=2dj[u,—(u,-)o] where d;=(df/0u),.

If f is the true value of f using the true values i;, and
f is the value of f using parameters #; obtained from
least-squares equations involving re81duals, D,=
(F,)on— Fy, then

f_f=;, dd;—u,)= hz C;.D;.=g Cray (8 — 1))

where

_ [ 9F:
= (3u1)0,|'

(F,)on is the observed estimate of the true quantlty E,
for which calculated estimates are made using F,,—
(F)on+ Zanll;— (u))o]. F, is the estimate of F, using

F,=(F.)on+ Dan[#;— (u))o] since only then can we say
ZChahJ(uj_uj) Cu(F,—F,) and that ZCh[(Fo)Oh F)
—ZC,,(F,, F,) exactly. The C, coefﬁ01ents are not

umque if n, the number of (F,),, values, exceeds m,
the number of u; parameters.

The variance of f is var (f)={(f—F)*(F~F))=
(Z (DpyDy CiyChp)y. It is  customary (Hamilton,

1964) at this stage to continue assuming that the prob-
lem is a real-number problem, but this assumes that
D,, can only have a phase of « or a+=, so that only
the value of D, in the phase direction of (F.),, need be
considered. However it is beneficial to assume D, can
have any phase and we shall continue using com-
ponents parallel (subscript 1) and at z/2 (subscript 2)
to an arbitrary direction.
To find the values of C, we minimize

var (f)— ; (4 hZ Cuans+ 4] hz Crany)
+ 2, (Ad;+Ajd]) .
7

Since d;=3>Cya,; we are still only minimizing var 0,
h
but the Lagrange multipliers 4; enable the determina-
tion of the C, values under the constraint d; = Cyay;.
h

Great simplification is achieved if we choose a scale
for our calculations of (F,), either by adding a con-
stant to all (F,), or by multiplying all (¥.), by a con-
stant dependlng on the type of problem, so that
< Z thDh1Cthh1> 0 making var ()= <21Dn|2|Cn|z>

ThlS w111 eliminate any correlation between observa-

tions and avoid the possibility of having to minimize

sums of the form > 4y, Wy, 4y,- For example the n real
h

hl z . . o
numbers x; can be put on such a scale to minimize the
variance of Z()E,-—J'c,) by adding k — % where £=in/n

Then Z (xi+k %) (x;+k—%)=n(n—1)k*— Z(x,
£)?=0 1f k +[Z(x, 2P [n(n— D], i.e. the real num-
bers x; are put on scale by making >x;=>%,. Any de-

i i

pendence of a value for an observation upon any other
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observation should be included in the model for cal-
culating (F,), by including parameters u; whose coef-
ficients a,; depend on (F,)y, values.

A method of notation will be adopted henceforth
in which the appropriate subscripts are included in or-
der in brackets after the terms to which the subscripts
apply. For example the real part of A,Cuay=
AD(Ci(@n))i— (A1 (C)2 (@ng)2 — (A2 (Ch)s (any)2 —
(2)(Cp)x(ayy)y will be written as 1;Cya,; (111 —-122—
212—221).

8 var (f) .
From — -2~ =0 we obtain
3(Cu)y !
{ID4*> (C)1 = ,Z Ay (11=22).
From 9 ;?(r:h()f ) =0 we obtain

D4 (Ca)o=— Z Asany (12+21) .

If it is assumed that
Z anayy[{IDyl?) (12-21)=0
h

for any i, j it follows that
Z Cuay (11-22)= jz A2
h

and that
- ; Chap (12421)= ; Aij(25)2

where
Ayj=A;= Z {|Dul*)~ apsan; (11422)
b

=% Z {IDW*)~* (arian; + aniany)
W

is independent of the phase chosen for evaluating com-
ponents. A;; and (4~%);; are real and consequently
we do not associate component subscripts 1 and 2 with
these quantities.

We now obtain

(A= ,?7: Cran (A™Y; (11-22)
(L)2=— 2, Cuanf(A™Y;; (12+21)
Jh
<|Dh|2> (Ch)l =
S e (A1) s (111—221 +122+212)

im
and

IDwl*) (Cp)z
= Z Ch,a,,'j(A'l)ﬂah, (121 +21 1 - l 12+222) .
ijn’

It follows that
; @@y —uy)= nz (CyDy) = ; C,.D, (11-22)
= izj: (d):(4 ~1,:B;

and

; (d)a(d;—it;)= hz (CuDp)y=— ; C,D, (12421)

= g, (d)(A~NB;
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where
@)= hE (Chatn;)1 = ; Cytr; (11—22),
d),=— zh Chan; (12421)
and
Bi=> (IDy?>~'auDy (11+22)
' =4 3 DU HaiDukauDy)

The equations Sd,(#;—ii,)= Sd{(A~");:B; are satisfied
= 5
if ZA d—i J~)=JB,- i=1 to m irrespective of the values
of d,.
It can also be seen at this stage that the minimum
value var (f) takes up is
> [Craw; (11-22) (A7) ;8uCy (11-22)

tjhh’

+ Cyyy (12421) (47130 Cy (12421)]
= iz dj(A_l)jldi (1 1 +22)= z d;(A—l)jldl .
J ij

Since f—f=§dj(ﬁj— i1;) and
var (]‘4) = z di{@@;—ay) (@di— ;) yd,;

it is seen that cov (4, #;)=(4"");; provided the par-
ameters #; are obtained from the least-squares equa-
tions >.A;[d;— (u;)l=B; where

J

Bi=1f2{a?wh[(Fo on— (Fe)on) + @il (Fo)on— (Foonl*}
n
Ay =% (amwaan; + auiwnang) and wit={|Dyl%).
h

To do this it is important to preserve the linearity
of the residuals and this implies that Dj=(F,)on— F
where F,=(F)on+ >as; [4;—(u;)] and is not neces-

sarily the true value F}, for two reasons. Firstly the co-
efficients a,; are evaluated for the parameters (u;)o, not
the parameters iZ; and any non-linearity of the residuals
causes a variation of the coefficient a,, with choice of
(u;)o- Secondly it has been assumed that the model for
calculation is correct with all relevant parameters u;
included. It is therefore wrong to say {|D|*)=
var (|F,},) as this assumes that there is no error in the
phase of (F,),, and that there is no error in the model
Fy=(F.)on+ 2a; [i1;— (;)o] for calculating F, from the

true paramefers ii;. It is equally wrong to say that any
error not accounted for can be included by saying
{|Dy|*)y=a? var (|F,|s) where g* is a constant. .

R Now Dy =[(F,)on— Fy) +[Fy— Fy] where (Fo)gh—Fh‘—‘
Ay=(Fo)on— (FeJon— Zahj[ﬁj —(uy)e] and Fy—Fy=
San (i, — ). We readily see that if (F,—F,»=0 and

J
wi t={|Dy|*), then

z wy| Dyl> =n= Z thZlhlZ+ Z Wi@niani M -
A h nij

AND ITS IMPLICATIONS

Now the variance-covariance matrix M;;=(4~");; so
that

n=; AV ALES g A (A7)

giving Zw,,lﬁ,,|2=n—m for an ideal weighting system.
h

Applied to the problem of obtaining the estimate %
of the true value ¥ from a number of observations Xx;
we see that if we have n equally weighted observations
a consistent result is obtained for £= >x,/n, and

h

wit= D (xy— %) /n+ 2xn—=%)n (n—1)
h h
where
> (xa—%)*n is the estimate of (x,— %)’
h

and

> (xa— £ n(n—1)=var () .

We see that wjl=>(x,—%)*/(n—1) is the estimate of
h
(x,—%)* and since a,, =1 we also see that 4;, =>wuak
h

gives
(47 Yy = hz (xy— X In(n—1)=var () ={(X—%)*)

and that

> wy(xy—X)=n—1.
h

The estimation of wy*=<{|Dy|*>

We have seen that Dh=2h+Za,.j(ﬁj—ﬁj)=(_Fo)0,,—F,,
where Ay=(F,)on—(FJon— Sanli;~ (;)c]. We assume
i~ i;y=0 which gives DAY= Q144+ Saians
where M;; is an estimate of the variance-covariance

matrix. Now the approximate value of (IA:,]2>/(|Dh|Z>

=(n—m)/n, so the accuracy of the estimate of M; will
not matter too much if (n—m)/m> 1. An actual value

of 4, can be obtained by iteration from the initial

values (u;),. However if the actual value of 14,17 is
used to evaluate {|Dy|*) the refinement will iterate to
the point where m values F, have perfect agreement
and only those other values of F, which also perfectly
agree with (F,)o, will have a non-zero weight.

It is best to evaluate {| D,|*>) by saying Dy = (F,)on— Fy
=E+E,+E, where E =(Fly—|F)F/|F, E;=
(F)on— Ful Fol/| F4l_and E;=F,—F, so that {|D,/*)=
{E?+]|Ey))*+]E;|*), since each of the terms E;, E;
and E; may be reasonably assumed to show no covari-
ance. {|E,|?) is simply var (|F,ly), {|E.|*) is the vari-
ance associated with the choice of phase of (F,)os and
E, is the systematic error associated with the model
F,=(F.)on+ Say,it;— (u;)o] to estimate Fy. E; will have

i

a contribution due to the variation of the coefficients
a,; with choice of (u;), but it is also possible to have
a contribution to E; due to the inaccuracy of the al-
gebraic form for calculating (F),. In X-ray crystal
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structure analyses the omission of atoms, absorption
and extinction corrections and the use of isotropic
temperature factors and rigid groups of atoms all fall
into this category.

The estimation of error in the phase of the observation

We can attribute a variance-covariance matrix to
the components of (F.)o=(Ac)on+i(B.)on associated
with parameters (u;), since (F.), changes to F, when
(#;)o changes to #; in the model

Fy=(Fo)on+ Zahj[ﬁj — (3)o]-

Since a,,;=(ay;); +i(ay;), we can say
var (Ac)on = Z(ahi)l(ahj)l(M i1)os
J

var (B:)on= %(am)z(ahj)z(M i)
and cov (A4)on(Bcon= Z(ahi)l(ahj)z(M i)o
i

where (M;;)o= {[(u)o— ;] [(u)o—;])-
(M;)o can be determined from an initial setting up of
the least-squares equations ZA, i[d;— ;)] =B; with
weights wy,. Then

(M )0 =[5, — (u;)o] [;— (u;)o] +cov (Gih;)
where cov (#4;) is

(47N ;wo,,z?:,.ﬁm+22kBk[ﬁk—(uk)o]}/(n—m).

The inverse of the variance in the phase direction «
is given by 1/o?=cos? («— )/} +sin? (¢« —f)/o3 where
B is the phase direction of the principle axis o7 of the
variance—covariance matrix of (F.),, given by

tan 2=2 cov (4)on(Bc)on/(Var (A)on—var (Bcon);

02=c0s*B var (A.)o,+ sin?f var (B,)os
+sin 28 cov (A4 )on(B:)on

sin? 8 var (A4;)on+cos? B var (B,
—sin 28 cov (A)on(Bcon

and g%=

This gives

2 var (A.)on var (B.)o—[cov (A)on(B.)onl

RAE 765
(F,)on 1s ooy while the true value of «j is &,, and this
makes {|E,|?)=|F,|2[2—2{cos (ctos— &) »]. Obviously if
(Fon=0, {cos (aoy—&,)»=0 and (|E,|*)=2|F,|; while
if |F,]2=0 |E,|>=0 and we see that this term discrimi-
nates in favour of observations for which |F,|, < |(F_/)oxl.

To evaluate {cos (ao,,—oc,,)> &, i1s unknown and some
probability function is necessary. If we assume that
quantities [(F,),— (F.)osl/o all belong to the same nor-
mal distribution, o2 being var (F,),, in the direction of
(F,)y— (F)on, then we can allow &, to range over 0-2z
and say

cos (dton—&x))

2n 2 2 2
= S cos (oo — &) €EXp — E—do'c,,/ S exp — X da,
o 2 o 2

where
X2=
A2 VaI‘ (BC)Oh + BZ Val‘ (AC)Oh - 2AB COV (AC)Oh(BC Oh
var (Ac)on var (Bg)oy —[cov (4)on(Beon)? ’

A=|F,|,cos & —(A)on and B=|F,|, sin & — (By)os. In
the case when 2=0, cos (xg, — &,) can only take values
of 1 and {|E,[*)=4|F,[i/[1 +exp 2|F lonl Folu/a?)].

The estimation of systematic error
An amount {|E;|*)={|F,— F,|*) has to be estimated
and included in the weight so that >w,dfd,=n—m
h

after refinement. It is advantageous to distribute this
error in a more meaningful way than simply to say
that it is a constant. One obvious contribution in an
X-ray crystallographic application is {f?*) the mean-
squared scattering power of any omitted atoms. The
most meaningful distribution of error will minimize

( Ar 4, n m)
<|E1|2+|E2|2+|E3|2>h n
and expressing E; as a function of three or four vari-

ables is a justifiable attempt to locate the cause of sys-
tematic error.

" cos? & var (B,)o,+sin? a var (4)en—sin 2a cov(4)on(Bon -

If var (Ac)Oh var (B.)on=(coV (4)on(B)on)* then a3=0

and o*=0? when a=p or [)’+n and zero elsewhere.

This situation is well known in X- -ray crystallography,

being the case for all reflexions in crystals having a

centre of symmetry and for special reflexions for many

other space groups, e.g. 40/ data of space group P2.
Now

E,= (Fo)Oh_Ftholh/IFhl =|F,|,(expioon — €Xpidy)

where the assumed value of the phase angle of

AC30A-6

Application to X-ray crystallography

The refinement of non-centrosymmetric crystal
structures

We see that it has been customary to refine a wrong
set of least-squares equations since the component of
(F))on— Fy at =/2 to the phase angle oy, of (F,)y, has
been ignored. It is important that we try to explain the
difficulties that are encountered in the refinement of
pseudo-centrosymmetric crystal structures. We can
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most simply do this in a two-dimensional example in
which  (9A4./0ur)on=(0Ac/0us)r  and  (OB./0u;)on=
—(9B./du)on

The least-squares equations thus obtained have
cov (uy+u,) (u;—u,)=0 and are

Ai+4, A—4; —(u1)o B, +B,
Ai—A, A+A4, uy~(U)o | = | Bi— B,

where B, =>w,(0A./0u)on(F,— F_)oy COS 0ty and B,=
h

2 Wi(0B,[0u;)on(Fy— F.)on Sin o, but the values of 4, and

h

A, depend on whether or not the correct equations are
used. Using the correct equations A4, = >w,(04,./0u;)3,
h

and A,=>wy(9B,/0u)%,, while using the incorrect
h

A;=Zw,, cos? 0o(0A4./0u)é, and A,=
Zw,, sin? aq, (0B, /Bul)o,, assuming Zw,, COS 0Oy SIN 0y
x(aAc/aul)o,,(aB Jou,)on=0. We can thus say A =

{cos? a)A4, and A2—<s1n o) A, though {cos®a)+
(sin?ay=1 only if Aj/A,+A;/A,=1. If certain data
can only have phase o or o, + 7z then {cos? «)+ {sin? &)

can be greater than one. The solutions of the least-
squares equations are

Auy+Au,= B, /A, ,

equations

Au,—

(u)o

if the correct equations are used. If the incorrect equa-
tions are used these shifts are B,/4; and B,/A, respec-
tively. Thus when the incorrect equations are used the
shifts are overemphasized by 1/{cos? a) and 1/¢sin* ).
The corresponding variances are estimated as being
I/{cos?a) and 1 [{sin® a) greater than before also.
However these variances are underestimated as we can
see using the true parameters i, #, as our starting
values of (ul)o, A

The variances are defined as {(#; +#,— i, — #,)*) and
{(#h —th,— i, +i1,)*) and are thus 1 /(cos2 ay? and
1/¢sin? a)? greater for the incorrect equations than for
the correct equations. The correct least-squares equa-
tions to use were derived for an expansion about the
true values #, #, using coefficient a,; evaluated for
(#;)o. The uncertainty of the phase of (F,)o,— F} is not
the same as the uncertainty of the phase of £, —F, and
this allows refinement of the incorrect least-squares
equations despite the fact that no restraint is imposed
on the component of (F,)o, — F, at /2 to ay,. It should
be noted that in the example we have used 4, approxi-
mates 4, and the covariance of parameters u, and u,,
which has bedevilled least-squares refinement with the
incorrect equations, is largely removed. As a con-
sequence it should now be possible with the correct
equations to refine a centrosymmetric structure in a
non-centrosymmetric space group since atoms at x, Vs
z and %, y, Z will no longer have a correlation coef-
ficient of 1. Thus in a space group such as C2/m it will
be possible to say more certainly that this is indeed the
space group and not C2 or Cm.

du,=By[4,
where
Au; = ﬁi -

THE PHASE PROBLEM AND ITS IMPLICATIONS

The refinement of a structure showing pseudo
translational symmetry

In a crystal showing pseudo translational symmetry
only a simple fraction of the data (e.g. 4, 1 erc.) will
have high average intensity and the ordered nature of
the variation from translational symmetry is best deter-
mined by the weak data. For example only data with
h=2n+1 can distinguish between fractional coordi-
nates x and x+%. When data are weighted according
to counting statistics only, it is commonly found that

1, the value of {w,|D,|?) for the h=2n data
is greater than
{2), the value of {(w,|D,|?) for the h#2n data

because of an overestimate of the ability of high-inten-
sity data to refine the structure.

It is of interest to investigate the consequence of this
situation. Let us consider a two-parameter problem
for fractional coordinates x, and x, separated by about
% and cov [(x;+x,) (x;—x,)]=0. For h=2n we obtain
contributions to the least-squares equations of

Al Al(l"'al) Ax1 Bl+bl
A,(1-9,) A, Ax, —b,
where 4x; = %£; — (x;),. Ontheir own these data give A4x, +

Ax,=2B,/4,(2—J)) and Ax,—Ax,=2b;/A,6, where

var (dx;+4x,)=2{1)/4,(2—3,) and var (dx,—Ax,)
=2(1)/4,0,
For h+#2n data we obtain contributions
2 —Az(l—az) Axl = BZ_*_bZ
—A4,(1-6,) A, Ax, —B,+b,1.

On their own these data give 4x, + 4x,=2b,/4,5, and
Ax,—Ax,=2B,]A,(2—J,) where
var (dx; + 4x,) =2(2)/ 4,6,
Ax,) =202/ A2~ 8y).
If we combine the results of the h=2» and the
h#2n data to obtain the minimum variances for the
non-covarying parameters x; +x, and x; —x, then we

should weight the data as the inverse of the variances.
Then

Axy+ A%, =(2B,(2) +2b,{1))/(A;(2 = 6,:)2) + 4,6,(1))
and dx,—A4x,=(2B,{1)+2b,(2))/
(422 62)C1)+ 4,6,(2))
where var (x; +x,)=2{1) {2}/
(A412—8)(2)+4,0,(1))
and var (x; —x,) =2¢1) {2)/(4,6,{(2) + 4,(2—5,){1)).

Combining the two sets of data, ignoring the fact
that {1)#(2), we obtain

and var (4x, —

A+ A4, Ai(1=0)—A4,(1-3,) || dx,
Al(l_él)—Az(l—az) A1+Az sz
B,+ B, +b,+b,

B]._BZ_bl +b2



giving
Ax,+4x,= Tﬁc{)—%’l—)m ,
R ek el
1>+<2
" var (dx, +dx;) = 4 é _> 51)<+>Az 3,
var (dx,—A4x,) = Aléfl-zzzgi AR

These answers are only the same as before if {1)>={2).
The differences in the two answers are given as

[2B/ 442 —6,) — 2by] A3 ] A2 5 430,
D=2 4 B =6 F A0l [A2 =325 F 40,015
for dx,+ 4x,

and
(26, 4,6, — 2B,/ 4,2 5,)] 416, 42— 6,)
O = ) 46, + 4,E=3,)] 143, + 42— 5){ 1]
for Ax,—4x, .

Now the true variance from the combined data set
is the variance from the minimum-variance combina-
tion of the data sets plus the expectation value of the
square of the difference in the answers using var
[2B,/A4,(2—6))]= 2(1>/A1(2 d,) etc. and assuming that
the covariance of the various contributions B,, B,, b,,
b, are zero. Thus

A1) (2
A1(2—06,) 2>+ 4:0:,(1)

A:2-094,0,  (K1)—(2)) ]

var (x; +x,)=

x[l+

[A4,2—0)+ A0, <1y <2
and
~ 21 (2
var (= X) = o 5 T+ A2 — ) 1Y
A15 A2(2 - 52) (<1 > - <2>)2
% [‘* A+ AC=8)F > 2 ] '

When (1) > (2) the incorrectly estimated variances are
too high for 4x,—4x, and too low for 4x,+4x,. It
should be noted that the removal of the x+7% trans-
lational symmetry element halves the number of sym-
metry elements in the supercell and the implications
of non-centrosymmetric refinements discussed earlier
are commonly an additional feature of these refine-
ments.

The crystal structure of K,ZnCl, has been inves-
tigated (Dix, 1972) and has pseudo translational sym-
metry elements of x+4, x+% and also a pseudo mirror
plane, crystallizing in the space group Pna2;,. Using
unit weights with discrimination to exclude 10% of
the data with low |F,[|, <|F,], and fractional coordinate

A C30A -6*
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shifts proved to be the best initial method of refinement
with the conventional but incorrect least-squares equa-
tions. Final refinement using weights from counting
statistics gave a final value for R of 0-064. At this
stage weighting by counting statistics gave

<wh|Dh|2>h=3n/<wh|Dh|2>h¢3n=6'5 not 1-0.

There are twelve different Zn—Cl bonds in this struc-
ture and a standard deviation evaluated from the set
of twelve bond lengths gave a value of 0-025 A com-
pared with the average estimate of 0-0072 A. We consider
the value of 0-025 i to be more representative of the
true variance using this incorrect approach. As a result
of these considerations further refinement of this struc-
ture is in progress.

Polar space groups

In the past when a full-matrix refinement procedure
has been used it has been found necessary to impose
some restraint on atom shifts for polar space groups.
This need is directly attributable to the fact that the
component of (F,)o,— (F.), at w/2 to the phase direc-
tion of (F,), has been completely ignored. Transla-
tion of atoms in the crystal implies multiplication by
a phase factor, or in other words a change in phase
angle. If the component of (F,)e,—~(F,), at /2 to o,
is minimized then so is the amount of translation of
atoms in the polar direction.

Approximations to the error in the phase of (F,)gn
using X-ray data
We saw earlier that
UEN?) =IF,Ii[2—2{cos (cton— &y))].

For an acentric crystal we assume that at a particular
value of sin /A, 6t=0% is a constant ¢ for general
reflexions and o¢?=2¢® when 0¢%=0. For general
reflexions {cos (ag,— &,)) is evaluated as

_y2
; ) d&,,/

2 _XZ
So exp( 2

2| Folul(Fe)oln cos (oon—&n)]/0*

2
g cos (o, — &) exp (
o

)d&,,
where X2 is now

UF 17+ 1F)oli—
so that

2n
{cos (aon— &p)) = S c0sa exp (| Fylx|(Fe)ols cOS “/Uz)d“/
0
27
\, &P (ELIE ol cos ofo?)da.

o> may be estimated as {|(F,)os—(F.)os|®) at angle 8
and to a good approximation will vary as >(f;2 sin 6/1)
i

where f; is the scattering factor of the ith atom cor-
responding to the value of 2sin6/A. Values of
{cos (oo — &) for various values of |F,|,|(F,)o[s/c? can
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be incorporated in a table for use in the least-squares
refinement procedure and only a single parameter
need be used for the estimation of o2

Conclusion

It has been demonstrated that the major cause of co-
variance problems in the least-squares refinement of
crystal structures has been caused by the use of incor-
rect least-squares equations and the insistence on
weighting according to counting statistics. With the
approach outlined in this paper it is possible to refine
a centrosymmetric structure in a non-centrosymmetric
space group. In such an application, if one starts from
exactly centrosymmetric coordinates, refinement pro-
ceeds to a false minimum since the structure will stay
centrosymmetric. However, if one is trying to test the
validity of a structural parameter defining a rigid group
of atoms, for example the angle which a plane of atoms
makes with a symmetry axis, then an initial perturba-
tion involving this parameter may be tested.

The problem of false minima is a necessary part of
refining a crystal structure with a fixed weighting
scheme (Rae, 1974). It is unrealistic to rely on the redef-
inition of the phase of (F,), to enable refinement to
proceed. The contribution to the weighting scheme of
{|E,)*) and (| E;|*) far outweighs the counting statistic
contribution {|E;|*) in all but the final refinement cycle
since 2 wyld;[*> 1 with w;={|E,|*).

K g
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The point is made that the refinement is only as good
as the weighting scheme. Because data with |(F.),| >
[(F,)sl are weighted preferentially, scale constants
should be refined on their own in a separate least-
squares cycle in the initial refinement stages with
{IFul*>=2.f# where f; is the scattering factor for the

t
ith atom in the crystal. The better the weighting scheme
the more rapid and correct the convergence. The only
extra computing time involved is in the actual multi-
plication of derivatives to form the matrix.

When refinement is complete wi/24, values will en-
able a probability distribution to be evaluated. By
multiplying w, by the probability associated with the
value of wj/24, it should be possible to improve the
refinement since the variance associated with the square
of a normal distribution is half the variance associated
with the normal distribution function itself.
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On the Libration of 9, 10-Anthraquinone at Five Temperatures
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Potential energy profiles corresponding to libration of 9,10-anthraquinone about its molecular axes were
constructed for the five structures derived from data which were collected at —170, — 112, — 72, — 125
and 20-5°C [Lonsdale, Milledge & El Sayed (1966). Acta Cryst. 20, 1-13]. These profiles were repre-
sented by fourth-degree least-squares polynomials, whereafter r.m.s. libration amplitudes and rigid
rotator frequencies of 9,10-anthraquinone were evaluated in the quadratic approximation. The tem-
perature dependence of the calculated quantities is in most cases close to that of the observed ones thus
reproducing, by comparison with observed Raman frequencies, the pseudoharmonic behaviour of
9,10-anthraquinone. Calculated r.m.s. libration amplitudes are only qualitatively comparable to the
experimental ones and appear to be somewhat too low. The present representation of energy profiles
makes it possible to estimate conveniently the contribution of anharmonicity to the profile shape.

Introduction
The availability of semiempirical potential functions
enables one to construct approximate potential energy

* On leave from the Department of Chemistry, Tel-Aviv
University, Ramat-Aviv, Israel.

profiles corresponding to a specified type of molecular
motion in the crystal. Such profiles were first shown by
Shmueli & Goldberg (1973) to be a valuable tool for a
critical examination of the librational motion indicated
by an analysis of anisotropic thermal parameters. Thus,
in cases of well behaved librational motion nearly
parabolic potential wells were obtained while most



